„The moon is not kept in her orbit round the earth, nor the earth in her orbit round the sun, by a force that varies merely in the inverse ratio of the squares of the distances.“

—  Thomas Malthus, An Essay on The Principle of Population (First Edition 1798, unrevised), Chapter XIII, paragraph 2, lines 19-22
Thomas Malthus Foto
Thomas Malthus6
científico inglés 1766 - 1834
Anuncio

Citas similares

Leonardo Da Vinci Foto

„The earth is not in the centre of the Sun's orbit nor at the centre of the universe, but in the centre of its companion elements, and united with them.“

—  Leonardo Da Vinci Italian Renaissance polymath 1452 - 1519
XV Astronomy, Context: The earth is not in the centre of the Sun's orbit nor at the centre of the universe, but in the centre of its companion elements, and united with them. And any one standing on the moon, when it and the sun are both beneath us, would see this our earth and the element of water upon it just as we see the moon, and the earth would light it as it lights us.

Aristarchus of Samos Foto
Anuncio

„If so, her motion must be influenced by it; perhaps she is retained in her orbit thereby. However, though the power of gravity is not sensibly weakened in the little change of distance, at which we can place ourselves from the centre of the earth, yet it is very possible that, so high as the moon, this power may differ much in strength from what it is here. To make an estimate what might be the degree of this diminution, he considered with himself that, if the moon be retained in her orbit by the force of gravity, no doubt the primary planets are carried round the sun by the like power. And, by comparing the periods of the several planets with their distances from the sun, he found that if any power like gravity held them in their courses, its strength must decrease in the duplicate proportion of the increase of distance. This he concluded by supposing them to move in perfect circles concentrical to the sun, from which the orbits of the greatest part of them do not much differ. Supposing therefore the power of gravity, when extended to the moon, to decrease in the same manner, he computed whether that force would be sufficient to keep the moon in her orbit. In this computation, being absent from books, he took the common estimate, in use among geographers and our seamen before Norwood had measured the earth, that 60 English miles were contained in one degree of latitude on the surface of the earth. But as this is a very faulty supposition, each degree containing about 691/2 of our miles, his computation did not answer expectation; whence he concluded, that some other cause must at least join with the action of the power of gravity on the moon. On this account he laid aside, for that time, any farther thoughts upon this matter.“

—  Henry Pemberton British doctor 1694 - 1771
Preface to View of Newton's Philosophy, (1728), Republished in: Stephen Peter Rigaud (1838) Historical Essay on the First Publication of Sir Newton's Principia http://books.google.com/books?id=uvMGAAAAcAAJ&pg=RA1-PA49. p. 50-51

Aristarchus of Samos Foto
James A. Michener Foto
Giordano Bruno Foto

„There are countless suns and countless earths all rotating round their suns in exactly the same way as the seven planets of our system.“

—  Giordano Bruno Italian philosopher, mathematician and astronomer 1548 - 1600
Context: There are countless suns and countless earths all rotating round their suns in exactly the same way as the seven planets of our system. We see only the suns because they are the largest bodies and are luminous, but their planets remain invisible to us because they are smaller and non-luminous. The countless worlds in the universe are no worse and no less inhabited than our earth. For it is utterly unreasonable to suppose that those teeming worlds which are as magnificent as our own, perhaps more so, and which enjoy the fructifying rays of a sun just as we do, should be uninhabited and should not bear similar or even more perfect inhabitants than our earth. The unnumbered worlds in the universe are all similar in form and rank and subject to the same forces and the same laws. Impart to us the knowledge of the universality of terrestrial laws throughout all worlds and of the similarity of all substances in the cosmos! Destroy the theories that the earth is the center of the universe! Crush the supernatural powers said to animate the world, along with the so-called crystalline spheres! Open the door through which we can look out into the limitless, unified firmament composed of similar elements and show us that the other worlds float in an ethereal ocean like our own! Make it plain to us that the motions of all the worlds proceed from inner forces and teach us in the light of such attitudes to go forward with surer tread in the investigation and discovery of nature! Take comfort, the time will come when all men will see as I do. As quoted in The Discovery of Nature (1965), by Albert W. Bettex

James Bradley Foto

„If we suppose the distance of the fixed stars from the sun to be so great that the diameter of the earth's orbit viewed from them would not subtend a sensible angle, or which amounts to the same, that their annual parallax is quite insensible; it will then follow that a line drawn from the earth in any part of its orbit to a fixed star, will always, as to sense, make the same angle with the plane of the ecliptic, and the place of the star, as seen from the earth, would be the same as seen from the sun placed in the focus of the ellipsis described by the earth in its annual revolution, which place may therefore be called its true or real place.
But if we further suppose that the velocity of the earth in its orbit bears any sensible proportion to the velocity with which light is propagated, it will thence follow that the fixed stars (though removed too far off to be subject to a parallax on account of distance) will nevertheless be liable to an aberration, or a kind of parallax, on account of the relative velocity between light and the earth in its annual motion.
For if we conceive, as before, the true place of any star to be that in which it would appear viewed from the sun, the visible place to a spectator moving along with the earth, will be always different from its true, the star perpetually appearing out of its true place more or less, according as the velocity of the earth in its orbit is greater or less; so that when the earth is in its perihelion, the star will appear farthest distant from its true place, and nearest to it when the earth is in its aphelion; and the apparent distance in the former case will be to that in the latter in the reciprocal proportion of the distances of the earth in its perihelion and its aphelion. When the earth is in any other part of its orbit, its velocity being always in the reciprocal proportion of the perpendicular let fall from the sun to the tangent of the ellipse at that point where the earth is, or in the direct proportion of the perpendicular let fall upon the same tangent from the other focus, it thence follows that the apparent distance of a star from its true place, will be always as the perpendicular let fall from the upper focus upon the tangent of the ellipse. And hence it will be found likewise, that (supposing a plane passing through the star parallel to the earth's orbit) the locus or visible place of the star on that plane will always be in the circumference of a circle, its true place being in that diameter of it which is parallel to the shorter axis of the earth's orbit, in a point that divides that diameter into two parts, bearing the same proportion to each other, as the greatest and least distances of the earth from the sun.“

—  James Bradley English astronomer; Astronomer Royal 1693 - 1762
Miscellaneous Works and Correspondence (1832), Demonstration of the Rules relating to the Apparent Motion of the Fixed Stars upon account of the Motion of Light.

Fernand Léger Foto
Richard Dawkins Foto
George Orwell Foto
Christiaan Huygens Foto
John Dee Foto

„But some years after, a letter, which he received from Dr. Hooke, put him on inquiring what was the real figure, in which a body let fall from any high place descends, taking the motion of the earth round its axis into consideration. Such a body, having the same motion, which by the revolution of the earth the place has whence it falls, is to be considered as projected forward and at the same time drawn down to the centre of the earth. This gave occasion to his resuming his former thoughts concerning the moon, and Picard in France having lately measured the earth, by using his measures the moon appeared to be kept in her orbit purely by the power of gravity; and consequently, that this power decreases, as you recede from the centre of the earth, in the manner our author had formerly conjectured. Upon this principle he found the line described by a falling body to be an ellipsis, the centie of the earth being one focus. And the primary planets moving in such orbits round the sun, he had the satisfaction to see, that this inquiry, which he had undertaken merely out of curiosity, could be applied to the greatest purposes. Hereupon he composed near a dozen propositions, relating to the motion of the primary planets about the sun. Several years after this, some discourse he had with Dr. Halley, who at Cambridge made him a visit, engaged Sir Isaac Newton to resume again the consideration of this subject; and gave occasion to his writing the treatise, which he published under the title of Mathematical Principles of Natural Philosophy. This treatise, full of such a variety of profound inventions, was composed by him, from scarce any other materials than the few propositions before mentioned, in the space of a year and a half.“

—  Henry Pemberton British doctor 1694 - 1771
Preface to View of Newton's Philosophy, (1728), Republished in: Stephen Peter Rigaud (1838) Historical Essay on the First Publication of Sir Newton's Principia http://books.google.com/books?id=uvMGAAAAcAAJ&pg=RA1-PA49. p. 519

Aristarchus of Samos Foto
John Dee Foto

„Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam egestas wisi a erat. Morbi imperdiet, mauris ac auctor dictum.“