Frases de Augustus De Morgan
página 2

Augustus De Morgan [1]​ fue un matemático y lógico británico nacido en la India. Profesor de matemáticas en el University College de Londres entre 1828 y 1866; y primer presidente de la Sociedad Matemática de Londres. Conocido por formular las llamadas leyes de De Morgan, en su memoria, y establecer un concepto riguroso del procedimiento, inducción matemática.[2]​ Wikipedia  

✵ 27. junio 1806 – 18. marzo 1871
Augustus De Morgan Foto
Augustus De Morgan: 49   frases 0   Me gusta

Frases célebres de Augustus De Morgan

“Yo no escuché lo que dijo, pero estoy totalmente de acuerdo con usted.”

Atribuida a Augustus De Morgan.
Fuente: Citado en: August Stern (1994). El cerebro cuántico: Teoría e implicaciones. North-Holland/Elsevier. pág. 7

“El poder movilizador de la invención matemática no es el razonamiento, sino la imaginación.”

Fuente: Citado en Robert Perceval Graves: La vida de Sir William Rowan Hamilton Vol. 3 (1889) pág. 219.

Augustus De Morgan: Frases en inglés

“The moving power of mathematical invention is not reasoning, but imagination.”

Quoted in Robert Perceval Graves, The Life of Sir William Rowan Hamilton, Vol. 3 (1889), p. 219.

“The work now before the reader is the most extensive which our language contains on the subject.”

Preface, p. iii
The Differential and Integral Calculus (1836)

“I did not hear what you said, but I absolutely disagree with you.”

Attributed to Augustus De Morgan in: August Stern (1994). The Quantum Brain: Theory and Implications. North-Holland/Elsevier. p. 7

“A great many individuals ever since the rise of the mathematical method, have, each for himself, attacked its direct and indirect consequences. …I shall call each of these persons a paradoxer, and his system a paradox.”

I use the word in the old sense: ...something which is apart from general opinion, either in subject-matter, method, or conclusion. ...Thus in the sixteenth century many spoke of the earth's motion as the paradox of Copernicus, who held the ingenuity of that theory in very high esteem, and some, I think, who even inclined towards it. In the seventeenth century, the depravation of meaning took place... Phillips says paradox is "a thing which seemeth strange"—here is the old meaning...—"and absurd, and is contrary to common opinion," which is an addition due to his own time.
A Budget of Paradoxes (1872)

“Experience has convinced me that the proper way of teaching is to bring together that which is simple from all quarters, and, if I may use such a phrase, to draw upon the surface of the subject a proper mean between the line of closest connexion and the line of easiest deduction.”

This was the method followed by Euclid, who, fortunately for us, never dreamed of a geometry of triangles, as distinguished from a geometry of circles, or a separate application of the arithmetics of addition and subtraction; but made one help out the other as he best could.
The Differential and Integral Calculus (1836)