Frases de Bernhard Riemann

Georg Friedrich Bernhard Riemann fue un matemático alemán que realizó contribuciones muy importantes al análisis y la geometría diferencial, algunas de las cuales allanaron el camino para el desarrollo más avanzado de la relatividad general. Su nombre está conectado con la función zeta, la hipótesis de Riemann, la integral de Riemann, el lema de Riemann, las variedades de Riemann, las superficies de Riemann y la geometría de Riemann. Wikipedia  

✵ 17. septiembre 1826 – 20. julio 1866
Bernhard Riemann Foto
Bernhard Riemann: 43   frases 0   Me gusta

Bernhard Riemann: Frases en inglés

“Let us imagine that from any given point the system of shortest lines going out from it is constructed; the position of an arbitrary point may then be determined by the initial direction of the geodesic in which it lies, and by its distance measured along that line from the origin. It can therefore be expressed in terms of the ratios dx0 of the quantities dx in this geodesic, and of the length s of this line. …the square of the line-element is \sum (dx)^2 for infinitesimal values of the x, but the term of next order in it is equal to a homogeneous function of the second order… an infinitesimal, therefore, of the fourth order; so that we obtain a finite quantity on dividing this by the square of the infinitesimal triangle, whose vertices are (0,0,0,…), (x1, x2, x3,…), (dx1, dx2, dx3,…). This quantity retains the same value so long as… the two geodesics from 0 to x and from 0 to dx remain in the same surface-element; it depends therefore only on place and direction. It is obviously zero when the manifold represented is flat, i. e., when the squared line-element is reducible to \sum (dx)^2, and may therefore be regarded as the measure of the deviation of the manifoldness from flatness at the given point in the given surface-direction. Multiplied by -¾ it becomes equal to the quantity which Privy Councillor Gauss has called the total curvature of a surface. …The measure-relations of a manifoldness in which the line-element is the square root of a quadric differential may be expressed in a manner wholly independent of the choice of independent variables. A method entirely similar may for this purpose be applied also to the manifoldness in which the line-element has a less simple expression, e. g., the fourth root of a quartic differential. In this case the line-element, generally speaking, is no longer reducible to the form of the square root of a sum of squares, and therefore the deviation from flatness in the squared line-element is an infinitesimal of the second order, while in those manifoldnesses it was of the fourth order. This property of the last-named continua may thus be called flatness of the smallest parts. The most important property of these continua for our present purpose, for whose sake alone they are here investigated, is that the relations of the twofold ones may be geometrically represented by surfaces, and of the morefold ones may be reduced to those of the surfaces included in them…”

On the Hypotheses which lie at the Bases of Geometry (1873)

Autores similares

Lewis Carroll Foto
Lewis Carroll 38
diácono anglicano, lógico, matemático, fotógrafo y escritor…
Otto Von Bismarck Foto
Otto Von Bismarck 29
político alemán
Mary Shelley Foto
Mary Shelley 38
escritora inglesa
Gottlob Frege Foto
Gottlob Frege 7
matemático de Alemania
Karl Weierstrass Foto
Karl Weierstrass 2
matemático
Évariste Galois Foto
Évariste Galois 4
matemático francés
Carl Friedrich Gauss Foto
Carl Friedrich Gauss 6
astrónomo, matemático y físico alemán
William Thomson Foto
William Thomson 7
físico y matemático británico
André-Marie Ampère Foto
André-Marie Ampère 3
Matemático y físico de Francia
John Venn Foto
John Venn 1
matemático y lógico británico