Frases de Hans Reichenbach

Hans Reichenbach Foto
0   0

Hans Reichenbach

Fecha de nacimiento: 26. Septiembre 1891
Fecha de muerte: 9. Abril 1953

Hans Reichenbach fue un físico, filósofo y lógico alemán, uno de los más importantes filósofos de la ciencia del siglo XX. Hizo importantes contribuciones a la teoría de la probabilidad y a las interpretaciones filosóficas de la relatividad, de la mecánica cuántica y de la termodinámica. Fundó el Círculo de Berlín, cuyos miembros participaron en muchas de las discusiones del Círculo de Viena, por lo que a veces se les considera como representantes del positivismo lógico.

Para Reichenbach el significado de todos los tiempos verbales se obtiene del modo en que se combinan tres términos teóricos, a saber, el punto del habla , que designa el momento de la enunciación, el punto de evento , que refiere al punto de la línea temporal en el que se localiza el acontecimiento denotado por el predicado verbal, y el punto de referencia , que se corresponde con un intervalo de tiempo.[1]​ Wikipedia

Frases Hans Reichenbach

Help us translate English quotes

Discover interesting quotes and translate them.

Start translating

„The main objection to the theory of pure visualization is our thesis that the non-Euclidean axioms can be visualized just as rigorously if we adjust the concept of congruence. This thesis is based on the discovery that the normative function of visualization is not of visual but of logical origin and that the intuitive acceptance of certain axioms is based on conditions from which they follow logically, and which have previously been smuggled into the images. The axiom that the straight line is the shortest distance is highly intuitive only because we have adapted the concept of straightness to the system of Eucidean concepts. It is therefore necessary merely to change these conditions to gain a correspondingly intuitive and clear insight into different sets of axioms; this recognition strikes at the root of the intuitive priority of Euclidean geometry. Our solution of the problem is a denial of pure visualization, inasmuch as it denies to visualization a special extralogical compulsion and points out the purely logical and nonintuitive origin of the normative function. Since it asserts, however, the possibility of a visual representation of all geometries, it could be understood as an extension of pure visualization to all geometries. In that case the predicate "pure" is but an empty addition, since it denotes only the difference between experienced and imagined pictures, and we shall therefore discard the term "pure visualization."“

—  Hans Reichenbach

Instead we shall speak of the normative function of the thinking process, which can guide the pictorial elements of thinking into any logically permissible structure.
The Philosophy of Space and Time (1928, tr. 1957)

„The surfaces of three-dimensional space are distinguished from each other not only by their curvature but also by certain more general properties. A spherical surface, for instance, differs from a plane not only by its roundness but also by its finiteness. Finiteness is a holistic property. The sphere as a whole has a character different from that of a plane. A spherical surface made from rubber, such as a balloon, can be twisted so that its geometry changes…. but it cannot be distorted in such a way as that it will cover a plane. All surfaces obtained by distortion of the rubber sphere possess the same holistic properties; they are closed and finite. The plane as a whole has the property of being open; its straight lines are not closed. This feature is mathematically expressed as follows. Every surface can be mapped upon another one by the coordination of each point of one surface to a point of the other surface, as illustrated by the projection of a shadow picture by light rays. For surfaces with the same holistic properties it is possible to carry through this transformation uniquely and continuously in all points. Uniquely means: one and only one point of one surface corresponds to a given point of the other surface, and vice versa. Continuously means: neighborhood relations in infinitesimal domains are preserved; no tearing of the surface or shifting of relative positions of points occur at any place. For surfaces with different holistic properties, such a transformation can be carried through locally, but there is no single transformation for the whole surface.“

—  Hans Reichenbach

The Philosophy of Space and Time (1928, tr. 1957)

„Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam egestas wisi a erat. Morbi imperdiet, mauris ac auctor dictum.“

Autores similares

George Santayana Foto
George Santayana13
filósofo, ensayista, poeta y novelista español (1863-1952)
Emil Cioran Foto
Emil Cioran80
filósofo y ensayista rumano
Ludwig Wittgenstein Foto
Ludwig Wittgenstein44
filósofo nacido en Viena
Ayn Rand Foto
Ayn Rand370
filósofa y escritora estadounidense
José Ortega Y Gasset Foto
José Ortega Y Gasset179
filósofo y ensayista español
Martin Heidegger Foto
Martin Heidegger21
filósofo alemán
Michel Foucault Foto
Michel Foucault33
filósofo francés
Simone Weil Foto
Simone Weil31
Filósofa francesa, activista social, mística cristiana
Martin Buber Foto
Martin Buber5
Filósofo y escritor judío.
Henri Bergson Foto
Henri Bergson14
escritor y filósofo irracionalista francés
Aniversarios de hoy
Joseph Conrad Foto
Joseph Conrad33
escritor polaco en lengua inglesa 1857 - 1924
Ozzy Osbourne Foto
Ozzy Osbourne7
cantante y compositor británico 1948
Robert Louis Stevenson Foto
Robert Louis Stevenson17
novelista, poeta y ensayista escocés 1850 - 1894
Jean-Luc Godard Foto
Jean-Luc Godard16
cineasta franco-suizo 1930
Otros 52 aniversarios hoy
Autores similares
George Santayana Foto
George Santayana13
filósofo, ensayista, poeta y novelista español (1863-1952)
Emil Cioran Foto
Emil Cioran80
filósofo y ensayista rumano
Ludwig Wittgenstein Foto
Ludwig Wittgenstein44
filósofo nacido en Viena
Ayn Rand Foto
Ayn Rand370
filósofa y escritora estadounidense
José Ortega Y Gasset Foto
José Ortega Y Gasset179
filósofo y ensayista español