Frases de Henri Poincaré

Henri Poincaré Foto
9   1

Henri Poincaré

Fecha de nacimiento: 29. Abril 1854
Fecha de muerte: 17. Julio 1912
Otros nombres:Анри Пуанкаре

Jules Henri Poincaré , generalmente conocido como Henri Poincaré, fue un prestigioso polímata: matemático, físico, científico teórico y filósofo de la ciencia, primo del presidente de Francia Raymond Poincaré. Poincaré es descrito a menudo como el último «universalista» capaz de entender y contribuir en todos los ámbitos de la disciplina matemática. En 1894 estableció el grupo fundamental de un espacio topológico.

Autores similares

Albert Einstein Foto
Albert Einstein259
físico germano-estadounidense, creador de la teoría de la...
Blaise Pascal Foto
Blaise Pascal127
Matemático, físico, filósofo cristiano y escritor
Isaac Newton Foto
Isaac Newton14
físico, filósofo, teólogo, inventor, alquimista y matemát...
Évariste Galois Foto
Évariste Galois3
matemático francés
Robert Boyle Foto
Robert Boyle4
químico inglés
Galileo Galilei Foto
Galileo Galilei24
astrónomo, filósofo, matemático y físico italiano
Joseph-Louis de Lagrange Foto
Joseph-Louis de Lagrange3
matemático, físico y astrónomo italiano

Frases Henri Poincaré

„All that is not thought is pure nothingness“

—  Henri Poincaré
Context: All that is not thought is pure nothingness; since we can think only thought and all the words we use to speak of things can express only thoughts, to say there is something other than thought, is therefore an affirmation which can have no meaning. And yet—strange contradiction for those who believe in time—geologic history shows us that life is only a short episode between two eternities of death, and that, even in this episode, conscious thought has lasted and will last only a moment. Thought is only a gleam in the midst of a long night. But it is this gleam which is everything.<!--p.142 Ch. 11: Science and Reality

„When we say force is the cause of motion, we talk metaphysics“

—  Henri Poincaré
Context: What is mass? According to Newton, it is the product of the volume by the density. According to Thomson and Tait, it would be better to say that density is the quotient of the mass by the volume. What is force? It, is replies Lagrange, that which moves or tends to move a body. It is, Kirchhoff will say, the product of the mass by the acceleration. But then, why not say the mass is the quotient of the force by the acceleration? These difficulties are inextricable. When we say force is the cause of motion, we talk metaphysics, and this definition, if one were content with it, would be absolutely sterile. For a definition to be of any use, it must teach us to measure force; moreover that suffices; it is not at all necessary that it teach us what force is in itself, nor whether it is the cause or the effect of motion. We must therefore first define the equality of two forces. When shall we say two forces are equal? It is, we are told, when, applied to the same mass, they impress upon it the same acceleration, or when, opposed directly one to the other, they produce equilibrium. This definition is only a sham. A force applied to a body can not be uncoupled to hook it up to another body, as one uncouples a locomotive to attach it to another train. It is therefore impossible to know what acceleration such a force, applied to such a body, would impress upon such an other body, if it were applied to it. It is impossible to know how two forces which are not directly opposed would act, if they were directly opposed. We are... obliged in the definition of the equality of the two forces to bring in the principle of the equality of action and reaction; on this account, this principle must no longer be regarded as an experimental law, but as a definition.<!--pp.73-74 Ch. VI: The Classical Mechanics (1905) Tr. https://books.google.com/books?id=5nQSAAAAYAAJ George Bruce Halstead

„For a definition to be of any use, it must teach us to measure force; moreover that suffices; it is not at all necessary that it teach us what force is in itself, nor whether it is the cause or the effect of motion.“

—  Henri Poincaré
Context: What is mass? According to Newton, it is the product of the volume by the density. According to Thomson and Tait, it would be better to say that density is the quotient of the mass by the volume. What is force? It, is replies Lagrange, that which moves or tends to move a body. It is, Kirchhoff will say, the product of the mass by the acceleration. But then, why not say the mass is the quotient of the force by the acceleration? These difficulties are inextricable. When we say force is the cause of motion, we talk metaphysics, and this definition, if one were content with it, would be absolutely sterile. For a definition to be of any use, it must teach us to measure force; moreover that suffices; it is not at all necessary that it teach us what force is in itself, nor whether it is the cause or the effect of motion. We must therefore first define the equality of two forces. When shall we say two forces are equal? It is, we are told, when, applied to the same mass, they impress upon it the same acceleration, or when, opposed directly one to the other, they produce equilibrium. This definition is only a sham. A force applied to a body can not be uncoupled to hook it up to another body, as one uncouples a locomotive to attach it to another train. It is therefore impossible to know what acceleration such a force, applied to such a body, would impress upon such an other body, if it were applied to it. It is impossible to know how two forces which are not directly opposed would act, if they were directly opposed. We are... obliged in the definition of the equality of the two forces to bring in the principle of the equality of action and reaction; on this account, this principle must no longer be regarded as an experimental law, but as a definition.<!--pp.73-74 Ch. VI: The Classical Mechanics (1905) Tr. https://books.google.com/books?id=5nQSAAAAYAAJ George Bruce Halstead

„Science is built up with facts, as a house is with stones. But a collection of facts is no more a science than a heap of stones is a house.“

—  Henri Poincaré
Context: The Scientist must set in order. Science is built up with facts, as a house is with stones. But a collection of facts is no more a science than a heap of stones is a house. Ch. IX: Hypotheses in Physics, Tr. George Bruce Halsted (1913)

„It is only through science and art that civilization is of value“

—  Henri Poincaré
Context: It is only through science and art that civilization is of value. Some have wondered at the formula: science for its own sake; an yet it is as good as life for its own sake, if life is only misery; and even as happiness for its own sake, if we do not believe that all pleasures are of the same quality... Every act should have an aim. We must suffer, we must work, we must pay for our place at the game, but this is for seeing's sake; or at the very least that others may one day see.<!--p.142 Ch. 11: Science and Reality

„When shall we say two forces are equal?“

—  Henri Poincaré
Context: What is mass? According to Newton, it is the product of the volume by the density. According to Thomson and Tait, it would be better to say that density is the quotient of the mass by the volume. What is force? It, is replies Lagrange, that which moves or tends to move a body. It is, Kirchhoff will say, the product of the mass by the acceleration. But then, why not say the mass is the quotient of the force by the acceleration? These difficulties are inextricable. When we say force is the cause of motion, we talk metaphysics, and this definition, if one were content with it, would be absolutely sterile. For a definition to be of any use, it must teach us to measure force; moreover that suffices; it is not at all necessary that it teach us what force is in itself, nor whether it is the cause or the effect of motion. We must therefore first define the equality of two forces. When shall we say two forces are equal? It is, we are told, when, applied to the same mass, they impress upon it the same acceleration, or when, opposed directly one to the other, they produce equilibrium. This definition is only a sham. A force applied to a body can not be uncoupled to hook it up to another body, as one uncouples a locomotive to attach it to another train. It is therefore impossible to know what acceleration such a force, applied to such a body, would impress upon such an other body, if it were applied to it. It is impossible to know how two forces which are not directly opposed would act, if they were directly opposed. We are... obliged in the definition of the equality of the two forces to bring in the principle of the equality of action and reaction; on this account, this principle must no longer be regarded as an experimental law, but as a definition.<!--pp.73-74 Ch. VI: The Classical Mechanics (1905) Tr. https://books.google.com/books?id=5nQSAAAAYAAJ George Bruce Halstead

„The essential characteristic of reasoning by recurrence is that it contains, condensed, so to speak, in a single formula, an infinity of syllogisms.“

—  Henri Poincaré
Context: This procedure is the demonstration by recurrence. We first establish a theorem for n = 1; then we show that if it is true of n - 1, it is true of n, and thence conclude that it is true for all the whole numbers... Here then we have the mathematical reasoning par excellence, and we must examine it more closely. ... The essential characteristic of reasoning by recurrence is that it contains, condensed, so to speak, in a single formula, an infinity of syllogisms. ... to arrive at the smallest theorem [we] can not dispense with the aid of reasoning by recurrence, for this is an instrument which enables us to pass from the finite to the infinite. This instrument is always useful, for, allowing us to overleap at a bound as many stages as we wish, it spares us verifications, long, irksome and monotonous, which would quickly become impracticable. But it becomes indispensable as soon as we aim at the general theorem... In this domain of arithmetic,.. the mathematical infinite already plays a preponderant rôle, and without it there would be no science, because there would be nothing general.<!--pp.10-12 Ch. I. (1905) Tr. George Bruce Halstead

Help us translate English quotes

Discover interesting quotes and translate them.

Translate quotes
Aniversarios de hoy
Agustín Agualongo Foto
Agustín Agualongo7
caracteristicas de su personalidad 1780 - 1824
Leonard Bernstein Foto
Leonard Bernstein4
compositor, pianista y director de orquesta estadounidense 1918 - 1990
Friedrich Nietzsche Foto
Friedrich Nietzsche743
filósofo alemán 1844 - 1900
Michael Faraday Foto
Michael Faraday10
físico y químico británico 1791 - 1867
Otros 76 aniversarios hoy
Autores similares
Albert Einstein Foto
Albert Einstein259
físico germano-estadounidense, creador de la teoría de la...
Blaise Pascal Foto
Blaise Pascal127
Matemático, físico, filósofo cristiano y escritor
Isaac Newton Foto
Isaac Newton14
físico, filósofo, teólogo, inventor, alquimista y matemát...
Évariste Galois Foto
Évariste Galois3
matemático francés